Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 3005-3015, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629561

RESUMO

Guizhou Province ranks first in terms of Hg reserves and production in the country, and rice is its largest grain crop. In order to study the characteristics and pollution causes of soil-rice Hg content at the provincial level in Guizhou and to carry out safe planting zoning, 1 564 pairs of soil-rice samples, 470 natural soil samples, and 203 individual paddy soil samples were collected to test their Hg content and basic physical and chemical properties of the soil. The results showed that:① Paddy soil was mainly neutral and acidic, the paddy soil ω (Hg) range was 0.005-93.06 mg·kg-1, and the geometric mean was 0.864 mg·kg-1. The Hg content of paddy soil in Guizhou Province was significantly higher than that in natural soil (0.16 mg·kg-1,P < 0.05). Compared with the filtered value and control value, the soil samples exceeded the standard by 63.25% and 14.71%, respectively. Among them, the soil Hg pollution in Danzhai County of Qiandongnan Prefecture, Wuchuan County of Zunyi City, Zhenfeng County of Qianxinan Prefecture, and Wanshan District of Tongren City was more prominent. ② Rice ω(Hg) ranged from 0.000 5 to 0.52 mg·kg-1, and the geometric mean was 0.010 mg·kg-1, the percentage of rice Hg content exceeding the standard was 25.87%, and the exceeding points were mainly distributed in Suiyang County of Zunyi City, Zhenfeng County of Qianxinan Prefecture, Xixiu District of Anshun City, Bijiang District of Tongren City, and other industrial and mining activity-intensive areas. ③ The majority of the study area was in the priority protection category (74.75%); the safe use category accounted for (24.62%); and the strictly controlled category (0.93%) was scattered in Danzhai County at the border between Qiannan Prefecture and Qiandongnan Prefecture, Zhenfeng County in Qianxinan Prefecture, and Wanshan District in Tongren. It is not recommended to plant rice, which can be used as feed for reproduction.


Assuntos
Mercúrio , Oryza , Poluentes do Solo , Solo/química , Oryza/química , Poluentes do Solo/análise , Monitoramento Ambiental , Mercúrio/análise , China
2.
Front Immunol ; 15: 1322125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440735

RESUMO

Introduction: One rare type of autoimmune disease is called neuromyelitis optica spectrum disorder (NMOSD) and the peripheral immune characteristics of NMOSD remain unclear. Methods: Here, single-cell RNA sequencing (scRNA-seq) is used to characterize peripheral blood mononuclear cells from individuals with NMOSD. Results: The differentiation and activation of lymphocytes, expansion of myeloid cells, and an excessive inflammatory response in innate immunity are observed. Flow cytometry analyses confirm a significant increase in the percentage of plasma cells among B cells in NMOSD. NMOSD patients exhibit an elevated percentage of CD8+ T cells within the T cell population. Oligoclonal expansions of B cell receptors are observed after therapy. Additionally, individuals with NMOSD exhibit elevated expression of CXCL8, IL7, IL18, TNFSF13, IFNG, and NLRP3. Discussion: Peripheral immune response high-dimensional single-cell profiling identifies immune cell subsets specific to a certain disease and identifies possible new targets for NMOSD.


Assuntos
Doenças Autoimunes , Neuromielite Óptica , Humanos , Leucócitos Mononucleares , Neuromielite Óptica/genética , Processos de Crescimento Celular , Análise de Sequência de RNA
3.
Biomark Med ; 18(5): 169-179, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440866

RESUMO

Objective: This study aimed to assess the value of PLK4 as a biomarker in papillary thyroid carcinoma (PTC). Methods: This study reviewed 230 PTC patients receiving surgical resections. PLK4 was detected in tumor tissues and samples of normal thyroid gland tissues by immunohistochemistry. Results: PLK4 was elevated in tumor tissues versus normal thyroid gland tissues (p < 0.001). Tumor PLK4 was linked with extrathyroidal invasion (p = 0.036), higher pathological tumor stage (p = 0.030), node stage (p = 0.045) and tumor/node/metastasis stage (p = 0.022) in PTC patients. Tumor PLK4 immunohistochemistry score >3 was linked with shortened disease-free survival (p = 0.026) and overall survival (p = 0.028) and independently predicted poorer disease-free survival (hazard ratio: 2.797; p = 0.040). Conclusion: Tumor PLK4 reflects extrathyroidal invasion, higher tumor stage and shortened survival in PTC.


Assuntos
Carcinoma Papilar , Carcinoma , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/patologia , Carcinoma/patologia , Carcinoma/cirurgia , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/cirurgia , Prognóstico , Proteínas Serina-Treonina Quinases/genética
4.
J Adv Res ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38246245

RESUMO

INTRODUCTION: During the adaptation to host plant resistance, herbivorous insects faced the challenge of overcoming plant defenses while ensuring their own development and reproductive success. To achieve this, a strategic allocation of energy resources for detoxification and ecological fitness maintenance became essential. OBJECTIVE: This study aimed to elucidate the intricate energy allocation mechanisms involved in herbivore adaptation that are currently poorly understood. METHODS: The rice Oryza sativa and its monophagous pest, the brown planthopper (BPH), Nilaparvata lugens were used as a model system. An integrated analysis of metabolomes and transcriptomes from different BPH populations were conducted to identify the biomarkers. RNA interference of key genes and exogenous injection of key metabolites were performed to validate the function of biomarkers. RESULTS: We found that alanine was one of the key biomarkers of BPH adaptation to resistant rice variety IR36. We also found that alanine flow determined the adaptation of BPH to IR36 rice. The alanine aminotransferase (ALT)-mediated alanine transfer to pyruvate was necessary and sufficient for the adaptation. This pathway may be conserved, at least to some extent, in BPH adaptation to multiple rice cultivars with different resistance genes. More importantly, ALT-mediated alanine metabolism is the foundation of downstream energy resource allocation for the adaptation. The adapted BPH population exhibited a significantly higher level of energy reserves in the fat body and ovary when fed with IR36 rice, compared to the unadapted population. This rendered the elevated detoxification in the adapted BPH and their ecological fitness recovery. CONCLUSION: Overall, our findings demonstrated the crucial role of ALT-mediated alanine metabolism in energy allocation during the adaptation to resistant rice in BPH. This will provide novel knowledge regarding the co-evolutionary mechanisms between herbivores and their host plants.

5.
Small ; : e2310469, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282141

RESUMO

Water splitting (or, water electrolysis) is considered as a promising approach to produce green hydrogen and relieve the ever-increasing energy consumption as well as the accompanied environmental impact. Development of high-efficiency, low-cost practical water-splitting systems demands elegant design and fabrication of catalyst-loaded electrodes with both high activity and long-life time. To this end, dimensional engineering strategies, which effectively tune the microstructure and activity of electrodes as well as the electrochemical kinetics, play an important role and have been extensively reported over the past years. Here, a type of most investigated electrode configurations is reviewed, combining particulate catalysts with 3D porous substrates (aerogels, metal foams, hydrogels, etc.), which offer special advantages in the field of water splitting. It is analyzed the design principles, structural and interfacial characteristics, and performance of particle-3D substrate electrode systems including overpotential, cycle life, and the underlying mechanism toward improved catalytic properties. In particular, it is also categorized the catalysts as different dimensional particles, and show the importance of building hybrid composite electrodes by dimensional control and engineering. Finally, present challenges and possible research directions toward low-cost high-efficiency water splitting and hydrogen production is discussed.

6.
J Agric Food Chem ; 72(4): 2263-2276, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235648

RESUMO

Crystal (Cry) toxins, produced by Bacillus thuringiensis, are widely used as effective biological pesticides in agricultural production. However, insects always quickly evolve adaptations against Cry toxins within a few generations. In this study, we focused on the Cry1Ac protoxin activated by protease. Our results identified PxTrypsin-9 as a trypsin gene that plays a key role in Cry1Ac virulence in Plutella xylostella larvae. In addition, P. xylostella miR-2b-3p, a member of the micoRNA-2 (miR-2) family, was significantly upregulated by Cry1Ac protoxin and targeted to PxTrypsin-9 downregulated its expression. The mRNA level of PxTrypsin-9, regulated by miR-2b-3p, revealed an increased tolerance of P. xylostella larvae to Cry1Ac at the post-transcriptional level. Considering that miR-2b and trypsin genes are widely distributed in various pest species, our study provides the basis for further investigation of the roles of miRNAs in the regulation of the resistance to Cry1Ac and other insecticides.


Assuntos
Bacillus thuringiensis , Inseticidas , MicroRNAs , Mariposas , Animais , Mariposas/genética , Mariposas/metabolismo , Larva/genética , Larva/metabolismo , Tripsina/genética , Tripsina/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Bacillus thuringiensis/química , Endotoxinas/genética , Endotoxinas/farmacologia , Endotoxinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência a Inseticidas/genética
7.
Br J Pharmacol ; 181(5): 640-658, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37702564

RESUMO

BACKGROUND AND PURPOSE: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription. We therefore hypothesised that miR-204 is involved in the development of CsA-induced atherosclerosis. EXPERIMENTAL APPROACH: ApoE-/- mice with macrophage-miR-204 overexpression were generated to determine the effects of miR-204 on CsA-induced atherosclerosis. Luciferase reporter assays and chromatin immunoprecipitation sequencing were performed to explore the targets mediating miR-204 effects. KEY RESULTS: CsA alone did not significantly affect atherosclerotic lesions or serum lipid levels. However, it exacerbated high-fat diet-induced atherosclerosis and hyperlipidemia in C57BL/6J and ApoE-/- mice, respectively. miR-204 levels decreased in circulating monocytes and plaque lesions during CsA-induced atherosclerosis. The upregulation of miR-204 in macrophages inhibited CsA-induced atherosclerotic plaque formation but did not affect serum lipid levels. miR-204 limited the CsA-induced foam cell formation by reducing the expression of the scavenger receptors SR-BII and CD36. SR-BII was post-transcriptionally regulated by mature miR-204-5p via 3'-UTR targeting. Additionally, nuclear-localised miR-204-3p prevented the CsA-induced binding of Ago2 to the CD36 promoter, suppressing CD36 transcription. SR-BII or CD36 expression restoration dampened the beneficial effects of miR-204 on CsA-induced atherosclerosis. CONCLUSION AND IMPLICATIONS: Macrophage miR-204 ameliorates CsA-induced atherosclerosis, suggesting that miR-204 may be a potential target for the prevention and treatment of CsA-related atherosclerotic side effects.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Animais , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Calcineurina/metabolismo , Antígenos CD36/metabolismo , Ciclosporina/efeitos adversos , Ciclosporina/metabolismo , Lipídeos , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/metabolismo
8.
Materials (Basel) ; 16(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959554

RESUMO

Niobium pentoxide (Nb2O5), as an important dielectric and semiconductor material, has numerous crystal polymorphs, higher chemical stability than water and oxygen, and a higher melt point than most metal oxides. Nb2O5 materials have been extensively studied in electrochemistry, lithium batteries, catalysts, ionic liquid gating, and microelectronics. Nb2O5 polymorphs provide a model system for studying structure-property relationships. For example, the T-Nb2O5 polymorph has two-dimensional layers with very low steric hindrance, allowing for rapid Li-ion migration. With the ever-increasing energy crisis, the excellent electrical properties of Nb2O5 polymorphs have made them a research hotspot for potential applications in lithium-ion batteries (LIBs) and supercapacitors (SCs). The basic properties, crystal structures, synthesis methods, and applications of Nb2O5 polymorphs are reviewed in this article. Future research directions related to this material are also briefly discussed.

9.
J Agric Food Chem ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917564

RESUMO

Spodoptera frugiperda is a highly destructive migratory pest that threatens various crops globally. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an effective biocontrol agent against lepidopteran pests. Here, we explored the molecular mechanisms underlying the immune response to AcMNPV infection in S. frugiperda. RNA-seq and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses identified the Toll, IMD, and apoptosis pathways as primary immune responses. Investigation into AcMNPV-induced apoptosis in the S. frugiperda cell line (Sf9) revealed that the Toll pathway activated the JNK via the TRAF6 (TNF receptor-associated factor 6) adapter. In addition, AcMNPV-induced the differential expression of several host-encoded microRNAs (miRNAs), with significant negative regulatory effects, on S. frugiperda antiviral immune genes. RNAi and miRNA-mimic mediated silencing of these genes resulted in increased AcMNPV proliferation. Our findings reinforce the potential of AcMNPV as a potent biocontrol agent and further our understanding of developing biotechnology-based targeted pest control agents.

10.
Microbiol Spectr ; 11(6): e0161923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37882580

RESUMO

IMPORTANCE: Methicillin-resistant Staphylococcus aureus (MRSA) infection severely threatens human health due to high morbidity and mortality; it is urgent to develop novel strategies to tackle this problem. Metabolites belong to antibiotic adjuvants which improve the effect of antibiotics. Despite reports of L-glutamine being applied in antibiotic adjuvant for Gram-negative bacteria, how L-glutamine affects antibiotics against Gram-positive-resistant bacteria is still unclear. In this study, L-glutamine increases the antibacterial effect of gentamicin on MRSA, and it links to membrane permeability and pH gradient (ΔpH), resulting in uptake of more gentamicin. Of great interest, reduced reactive oxygen species (ROS) by glutathione was found under L-glutamine treatment; USA300 becomes sensitive again to gentamicin. This study not only offers deep understanding on ΔpH and ROS on bacterial resistance but also provides potential treatment solutions for targeting MRSA infection.


Assuntos
Gentamicinas , Staphylococcus aureus Resistente à Meticilina , Humanos , Gentamicinas/farmacologia , Glutamina , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
11.
J Phys Chem Lett ; 14(38): 8421-8427, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37712525

RESUMO

Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO-LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2δ- species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.

12.
Acta Pharm ; 73(3): 475-488, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708956

RESUMO

In women, ovarian cancer is a common gynecological cancer associated with poor prognosis, reoccurrence and chemoresistance. Scoulerine, a benzylisoquinoline alkaloid, has been reported effective against several carcinomas. Thus, we investigated the impact of scoulerine on ovarian cancer cells (OVCAR3). Cell viability was assessed by MTT assay, migration was determined by Boyden Chamber assay, while the invasion was monitored by Boyden Chamber assay using the matrigel. The stemness properties of OVCAR3 cells were observed by tumorsphere assay. Epithelial to mesenchymal transition (EMT) and stemness-related protein markers were monitored by real-time PCR analysis and immunoblotting. Scoulerine inhibits the viability of OVCAR3 cells with the IC 50 observed at 10 µmol L-1 after 48 h treatment. Scoulerine inhibited the colony-forming ability, migration and invasiveness of OVCAR3 cells in a dose-dependent fashion. Scoulerine treatment also drastically reduced the spheroid-forming ability of OVCAR3 cells. The mesenchymal and stemness--related markers like N-cadherin, vimentin, CD-44, Oct-4, Sox-2 and Aldh1A1 were downregulated, whereas the epithelial markers like E-cadherin and CD-24 were upregulated in scoulerine-treated cells. The upstream PI3K/Akt/mTOR-axis was downregulated in scoulerine-treated cells. We concluded that scoulerine successfully perturbs the cancerous properties of OVCAR3 cells by targeting the PI3K/Akt/mTOR axis. In vivo studies revealed a substantial decrease in tumor mass and volume after scoulerine treatment. Furthermore, scoulerine treatment was found to decrease oxidative stress factors in ovarian cancer mice model. Scoulerine is a potential anticancer agent against ovarian cancer and can be considered as a lead molecule for this malignancy, provided further investigations are performed.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Animais , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Apoptose , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral
13.
Cancer Sci ; 114(12): 4535-4547, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750019

RESUMO

Papillary thyroid cancer (PTC) is the most common form of thyroid cancer and is characterized by its tendency for lymphatic metastasis, leading to a poor prognosis. Tetraspanin 1 (TSPAN1) is a member of the tetra-transmembrane protein superfamily and has been implicated in tumorigenesis and cancer metastasis in various studies. However, the role of TSPAN1 in PTC tumor development remains unclear. In this study, we aimed to investigate the impact of TSPAN1 on PTC cell behavior. Our results demonstrate that knockdown of TSPAN1 inhibits PTC cell proliferation, migration, and invasion, while overexpression of TSPAN1 has the opposite effect. These findings suggest that TSPAN1 might play a role in the tumorigenesis and invasiveness of PTC. Mechanistically, we found that TSPAN1 activates the ERK pathway by increasing its phosphorylation, subsequently leading to upregulated expression of c-Myc. Additionally, we observed that TSPAN1-ERK-c-Myc axis activation promotes glycolytic activity in PTC cells, as evidenced by the upregulation of glycolytic genes such as LDHA. Taken together, our findings indicate that TSPAN1 acts as an oncogene in PTC by regulating glycolytic metabolism. This discovery highlights the potential of TSPAN1 as a promising therapeutic target for PTC treatment. Further research in this area could provide valuable insights into the development of targeted therapies for PTC patients.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/patologia , Câncer Papilífero da Tireoide/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proliferação de Células/genética , Tetraspaninas/genética , Tetraspaninas/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética
14.
Huan Jing Ke Xue ; 44(9): 5299-5307, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699847

RESUMO

To investigate the change characteristics of exogenous cadmium (Cd) into red soil over time, different concentrations of Cd (0, 0.3, 2.0, 5.0, 10, 30, 60, and 100 mg·kg-1) were added to farmland soil, and samples were taken at the 3rd, 7th, 14th, 28th, 42th, 56th, 70th, and 84th day, respectively. The occurrence of Cd in farmland soil was analyzed using the BCR hierarchical extraction method, and the stabilization and distribution characteristics of Cd in farmland soil were simulated by three dynamical models. The results showed that:① After exogenous Cd entered the soil, the soil Cd form was redistributed, tending to the original soil Cd form distribution characteristics, the binding strength of Cd and soil increased as time increased, and the total redistribution coefficient gradually tended to 1. ② Stabilization of exogenous Cd in red soil was a long-term process. The extractable state of weak acid gradually transformed to the other three forms and finally to the residue state. Within 84 days, the oxidation state at 0.3 mg·kg-1 gradually decreased with time, and the other concentrations showed the opposite. Within 84 days, when the reducible state was below 30 mg·kg-1, it gradually decreased with time, and the other concentrations showed the opposite. ③ The stabilization process of exogenous Cd in red soil was mainly a diffusion process controlled by multiple reaction mechanisms. The higher the concentration of exogenous Cd, the higher the change rate of the residual state. These research results can provide theoretical basis for the related research based on exogenous cadmium and the risk control and remediation of soil contaminated with heavy metals.


Assuntos
Cádmio , Solo , Fazendas
15.
Rev. int. med. cienc. act. fis. deporte ; 23(92): 180-190, aug.-sept. 2023. tab, graf
Artigo em Inglês | IBECS | ID: ibc-229397

RESUMO

Objective: This study aims to evaluate the efficacy of secondary sentinel lymph node (SLN) biopsy in cN1a papillary thyroid carcinoma (PTC) surgery, drawing parallels to strategic approaches akin to those employed by athletic players.Methods: We selected eleven patients diagnosed with suspected cN1a PTC from January 2020 to July 2020. Carbon nanoparticles were utilized to mark lymph nodes, analogous to strategic marking in athletic games, ensuring precise identification during surgery. The secondary SLN biopsy technique was implemented, reflecting the precision and planning seen in athletic strategies.Results: The average tumor size was 12.64±5.63 mm. Notably, 2 patients exhibited extrathyroidal spread, 3 had thyroiditis, and all had neck metastases. The SLN identification rate stood at 100%, mirroring the accuracy expected in athletic performance. Out of the group, 3 patients had sentinel lymph node metastasis, with additional metastasis in non-SLN areas in 1 patient. The detection rate, false-negative rate, and overall accuracy paralleled the high performance and reliability seen in athletic endeavors. A total of 42 lateral SLNs were identified, with the majority being grade IV. This strategic identification is akin to an athlete's ability to focus on key areas during play (AU)


Assuntos
Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Biópsia de Linfonodo Sentinela , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia , Carcinoma/diagnóstico , Carcinoma/patologia , Atletas
16.
Insects ; 14(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37623411

RESUMO

The red imported fire ant (Solenopsis invicta Buren, 1972) is a globally significant invasive species, causing extensive agricultural, human health, and biodiversity damage amounting to billions of dollars worldwide. The pathogenic fungus Metarhizium anisopliae (Metchnikoff) Sorokin (1883), widely distributed in natural environments, has been used to control S. invicta populations. However, the interaction between M. anisopliae and the immune system of the social insect S. invicta remains poorly understood. In this study, we employed RNA-seq to investigate the effects of M. anisopliae on the immune systems of S. invicta at different time points (0, 6, 24, and 48 h). A total of 1313 differentially expressed genes (DEGs) were identified and classified into 12 expression profiles using short time-series expression miner (STEM) for analysis. Weighted gene co-expression network analysis (WGCNA) was employed to partition all genes into 21 gene modules. Upon analyzing the statistically significant WGCNA model and conducting Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the modules, we identified key immune pathways, including the Toll and Imd signaling pathways, lysosomes, autophagy, and phagosomes, which may collectively contribute to S. invicta defense against M. anisopliae infection. Subsequently, we conducted a comprehensive scan of all differentially expressed genes and identified 33 immune-related genes, encompassing various aspects such as recognition, signal transduction, and effector gene expression. Furthermore, by integrating the significant gene modules derived from the WGCNA analysis, we constructed illustrative pathway diagrams depicting the Toll and Imd signaling pathways. Overall, our research findings demonstrated that M. anisopliae suppressed the immune response of S. invicta during the early stages while stimulating its immune response at later stages, making it a potential biopesticide for controlling S. invicta populations. These discoveries lay the foundation for further understanding the immune mechanisms of S. invicta and the molecular mechanisms underlying its response to M. anisopliae.

17.
Infect Drug Resist ; 16: 4741-4754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496695

RESUMO

Background: The issue of methicillin-resistant Staphylococcus aureus (MRSA) resistant to many antibiotics and causing serious infectious diseases is a growing healthcare concern. Purpose: In recent years, exogenous administration of metabolites in combination with antibiotics can re-sensitize resistant bacteria to antibiotics; however, their effects vary, and their underlying mechanism of action remains elusive. Methods: We assessed the bactericidal effects of the three amino acids in combination with gentamicin in vitro and in vivo. Subsequently, we explored the role of these amino acids on the metabolomics of MRSA using Liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, we performed the downstream analyses using MetaboAnalyst and Interactive Pathways Explorer. Results: Exogenous threonine showed the best bactericidal efficacy with gentamicin, followed by glycine, wherein serine had no effect. Amino acid treatments mainly up-regulated the metabolites, increased the amino acid abundance, and significantly activated metabolisms; these effects were consistent with the bactericidal efficacy of the three amino acids. Most amino acids participated in the tricarboxylic acid cycle, and threonine supplementation increased the activities of citrate synthase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, whereas glycine increased activities of citrate synthase and α-ketoglutarate dehydrogenase, and serine did not affect the activities of any of the three key enzymes. We identified 24 biomarkers in the three groups, among which glutamic acid and cysteine showed a gradient decrease and increase, respectively. Subsequent analyses revealed that glutamic acid but not cysteine promoted the bactericidal effect of gentamicin synergistically. Conclusion: Threonine has the best synergistic effect in reversing bacterial resistance compared to glycine and serine. We show that different amino acids combined with an antibiotic mainly affect amino acid metabolism and act via different metabolic regulatory mechanisms, which could help develop effective strategies for tackling MRSA infections.

18.
J Adv Res ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37499938

RESUMO

INTRODUCTION: Preventing crop yield loss caused by pests is critical for global agricultural production. Agricultural pest control has largely relied on chemical pesticides. The interaction between insecticide resistance and the adaptation of herbivorous pests to host plants may represent an emerging threat to future food security. OBJECTIVES: This study aims to unveil genetic evidence for the reduction in the profitability of resistant cultivars derived from insecticide resistance in target pest insects. METHODS: An experimental evolution system encompassing resistant rice and its major monophagous pest, the brown planthopper Nilaparvata lugens, was constructed. Whole genome resequencing and selective sweep analysis were utilized to identify the candidate gene loci related to the adaptation. RNA interference and induced expression assay were conducted to validate the function of the candidate loci. RESULTS: We found that the imidacloprid-resistant population of N. lugens rapidly adapted to resistant rice IR36. Gene loci related to imidacloprid resistance may contribute to this phenomenon. Multiple alleles in the nicotinic acetylcholine receptor (nAChR)-7-like and P450 CYP4C61 were significantly correlated with changes in virulence to IR36 rice and insecticide resistance of N. lugens. One avirulent/susceptible genotype and two virulent/resistant genotypes could be inferred from the corresponding alleles. Importantly, we found that the virulent/resistant genotypes already exist in the wild in China, exhibiting increasing frequencies along with insecticide usage. We validated the relevance of these genotypes and the virulence to three more resistant rice cultivars. Knockdown of the above two genes in N. lugens significantly decreased both the resistance to imidacloprid and the virulence towards resistant rice. CONCLUSION: Our findings provide direct genetic evidence to the eco-evolutionary consequence of insecticide resistance, and suggest an urgent need for the implementation of predictably sustainable pest management.

19.
Anim Biosci ; 36(11): 1693-1699, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37402451

RESUMO

OBJECTIVE: Cows that are nursing get around 80% of their glucose from liver gluconeogenesis. Propionate, a significant precursor of liver gluconeogenesis, can regulate the key genes involved in hepatic gluconeogenesis expression, but its precise effects on the activity of enzymes have not yet been fully elucidated. Therefore, the aim of this study was to investigate the effects of propionate on the activity, gene expression, and protein abundance of the key enzymes involved in the gluconeogenesis of dairy cow hepatocytes. METHODS: The hepatocytes were cultured and treated with various concentrations of sodium propionate (0, 1.25, 2.50, 3.75, and 5.00 mM) for 12 h. Glucose content in the culture media was determined by an enzymatic coloring method. The activities of gluconeogenesis related enzymes were determined by enzyme linked immunosorbent assay kits, and the levels of gene expression and protein abundance of the enzymes were detected by real-time quantitative polymerase chain reaction and Western blot, respectively. RESULTS: Propionate supplementation considerably increased the amount of glucose in the culture medium compared to the control (p<0.05); while there was no discernible difference among the various treatment concentrations (p>0.05). The activities of cytoplasmic phosphoenolpyruvate carboxylase (PEPCK1), mitochondrial phosphoenolpyruvate carboxylase (PEPCK2), pyruvate carboxylase (PC), and glucose-6-phosphatase (G6PC) were increased with the addition of 2.50 and 3.75 mM propionate; the gene expressions and protein abundances of PEPCK1, PEPCK2, PC, and G6PC were increased by 3.75 mM propionate addition. CONCLUSION: Propionate encouraged glucose synthesis in bovine hepatocytes, and 3.75 mM propionate directly increased the activities, gene expressions and protein abundances of PC, PEPCK1, PEPCK2, and G6PC in bovine hepatocytes, providing a theoretical basis of propionate-regulating gluconeogenesis in bovine hepatocytes.

20.
Small Methods ; 7(10): e2300518, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37401189

RESUMO

Two-dimensional transition metal carbide/nitrides (MXenes) have recently received extensive attention due to their diverse material types and versatile structures, large-scale production, and excellent properties. MXene sheets possess abundant hydrophilic functional groups on their surface, which enable them to be assembled into macroscopic fibers or compounded with other functional materials to produce composite fibers. This review aims to provide a comprehensive analysis of MXene fibers in terms of their fabrication, structure, properties, and recent applications as flexible and wearable electronics. The review will discuss the principles of different methods used to synthesize MXene fibers and analyze the characteristics of the as-synthesized fibers, with a particular focus on the wet spinning method. The fundamental relationships between the microstructure of MXene fibers and their resulting mechanical and electrical properties will be explored. Furthermore, the review will elaborate on the progress made in MXene-based fibers in the rapidly growing field of wearable electronics applications, provide insights into future development of MXene fiber materials and propose solutions to the challenges facing practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...